skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Zhu, Shuze"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The abundance of cellulose found in natural resources such as wood, and the wide spectrum of structural diversity of cellulose nanomaterials in the form of micro‐nano‐sized particles and fibers, have sparked a tremendous interest to utilize cellulose's intriguing mechanical properties in designing high‐performance functional materials, where cellulose's structure–mechanics relationships are pivotal. In this progress report, multiscale mechanics understanding of cellulose, including the key role of hydrogen bonding, the dependence of structural interfaces on the spatial hydrogen bond density, the effect of nanofiber size and orientation on the fracture toughness, are discussed along with recent development on enabling experimental design techniques such as structural alteration, manipulation of anisotropy, interface and topology engineering. Progress in these fronts renders cellulose a prospect of being effectuated in an array of emerging sustainable applications and being fabricated into high‐performance structural materials that are both strong and tough. 
    more » « less